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Summing Logarithms in Quantum Field Theory:
The Renormalization Group
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The process of renormalization in quantum field theory necessarily involves the
introduction of an arbitrary mass scale m 2 into the theory. The effect of having
this parameter appear due to quantum effects can be analyzed from many points
of view; the general topic is usually called the ª renormalization group.º In this
paper, one aspect of this feature of quantum field theory is discussed in some
detail. It is shown how the appearance of this arbitrary mass scale imposes
consistency conditions on quantum-induced corrections to the classical action of
a model. This has the effect of determining higher order corrections in terms of
lower order corrections in the perturbative expansion of the effective action,
which in turn permits at least partial summation of all terms in the perturbative
expansion. This is illustrated in the context of two simple, well-understood models;
a f 4 model in four dimensions and a f 3 model in six dimensions. The technicalities
associated with the renormalization procedure itself are not discussed.

1. INTRODUCTION

The process of renormalization of the parameters that characterize a

theory in order to account for a physical interaction is a common occurrence.
As a simple example, consider a particle suspended in the vertical direction

by a spring. This system is defined in terms of three parameters; the mass

m of the particle, the spring constant k, and the equilibrium position x0. If

now this system interacts with a constant external gravitational field which

induces a free particle acceleration g, then the effect of this interaction is to

simply ª renormalizeº the equilibrium position of the oscillator from x0 to x0

1 mg/k without affecting m or k.

In quantum field theory, renormalization is not only possible, but is in

fact necessary in order to eliminate divergences that arise when performing
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perturbative calculations. This procedure inevitably leads to a degree of

arbitrariness in any calculation, characterized by the presence of a massive

parameter m 2 in any finite perturbative result. This parameter does not have
any physical significance; arbitrary changes in this scale parameter can be

compensated for by finite changes in the quantities (couplings, masses, field

strengths) that characterize the theory. This leads to the ª renormalization

groupº analysis of quantum field theory (Bogoliubov and Shirkov, 1959;

Callan, 1970; Gell-Mann and Low, 1954; ’ t Hooft, 1973; Stevenson, 1981;

Stueckelberg and Peterman, 1953; Symanzik, 1970; Weinberg, 1973).
We will not discuss the technical details of how the effective action is

computed or how divergent integrals are rendered meaningful through the

process of ª regularization.º [Indeed, in an approach which uses the analytic

continuation inherent in the zeta function, no explicit divergences appear in

perturbation theory, either at one loop order (Salam and Strathdee, 1975;

Dowker and Critchley, 1976; Hawking, 1977) or beyond (McKeon and Sherry,
1987; Culumovic et al., 1989, 1990).] Our starting point will be the functional

form of the effective action after the actual perturbative calculations have

been done. The fundamental feature of these calculations is that when using a

ª mass-independentº renormalization scheme (as in ’ t Hooft, 1973; Weinberg,

1973; Salam and Strathdee, 1975; Dowker and Critchley, 1976; Hawking,
1977; McKeon and Sherry, 1987; Culumovic et al., 1989) the coefficient of

each term in the effective action is a power series in L 5 ln(m2/ m 2), where

m2 is a mass in the theory and m 2 is the radiatively induced mass scale, which

is not fixed by the form of the initial classical action.

It is often said that the renormalization group permits one to sum these

logarithms. We will give an explicit demonstration of how this can be done.
This gives an alternate insight into what is meant by the so-called ª running

coupling constantsº and ª running massesº that usually are defined in terms of

explicitly divergent quantities that appear when deriving the ª renormalization

group equation.º

The reason that we can perform this summation is that the coefficients

of the powers of L occurring in the effective action are not all independent.
The requirement that changes in m 2 be compensated for by changes in the

couplings, masses, and field strengths in the theory fixes so-called ª leading

logarithmº terms to all orders in perturbation theory in terms of one-loop

results; ª next-to-leading-orderº logarithm corrections are determined by two-

loop calculations, etc. (In fact, the coefficients of the leading logarithm terms

indicate that they form a binomial expansion; the subleading terms are not
as tractable.)

These ideas are demonstrated in the content of two simple self-interacting

scalar models, a f 4 model in four dimensions and a f 3 model in six

dimensions.
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2. THE RENORMALIZATION GROUP FROM THE
EFFECTIVE POTENTIAL

We will begin by discussing a f 4 model in four dimensions whose

classical action is

G 0( f ) 5 2
1

2
f N f 1

1

2
m2f 2 1

1

4!
l f 4

where f is the classical background field. As is explained in Culumovic et
al. (1990), the form of the effective action of this scalar model is given by

G ( f ) 5 2
1

2
f Nf [1 1 l (a11 L 1 a10) 1 l 2(a22 L2 1 a21 L 1 a20) 1 ? ? ? ]

1
1

2
m2f 2[1 1 l (b11 L 1 b10) 1 l 2(b22 L2 1 b21 L 1 b20) 1 ? ? ? ]

1
1

4!
l f 4[1 1 l (c11 L 1 c10) 1 l 2(c22 L2 1 c21 L 1 c20) 1 ? ? ? ] (1)

where L [ ln(m2/ m 2) and the coefficients amn , bmn , and cmn are determined

by an mth-order calculation in the perturbative loop expansion. Requiring

that G ( f ) be independent of the parameter m 2 means that

m
d G
d m

5 0 (2)

so that, by the chain rule

F m
-

- m
1 b ( l )

-
- l

2 g m( l )m2 -
- m2 2 g G ( l ) f

-
- f G G 5 0 (3)

where

b ( l ) 5 m
- l
- m

(4a)

2 g m( l ) 5
m
m2

- m2

- m
(4b)

and

2 g G ( l ) 5
m
f

- f

- m
(4c)

This gives concrete realization to the statement in the introduction that changes

in the parameters that characterize the theory compensate for the change in the
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radiatively induced scale parameter m 2. If now we expand the renormalization

group functions in powers of l ,

b ( l ) 5 B2 l 2 1 B3 l 3 1 ? ? ? (5a)

g m( l ) 5 G1 l 1 G2 l 2 1 ? ? ? (5b)

and

2 g G ( l ) 5 D1 l 1 D2 l 2 1 ? ? ? (5c)

then to order l we obtain from (1), (3), and (5) that

D1 5 2 2a11 (6a)

G1 5 2(a11 2 b11) (6b)

B2 5 2 4a11 1 2c11 (6c)

showing that one-loop results serve to fix the lowest order contributions to

b , g m, and g G . If we now regroup the terms in (1) so that

G ( f ) 5 o
`

n 5 0 H 2
1

2
f Nf [An( l )Ln] 1

1

2
m2f 2[Bn( l )Ln]

1
1

4!
f 4[C¤n( l )Ln] J (7)

then (3) implies that

( 2 2 2 g m)nAn 1 b A8n 2 1 2 2 g G An 2 1 5 0 (8a)

( 2 2 2 g m)nBn 1 b B8n 2 1 2 g m Bn 2 1 2 2 g G Bn 2 1 5 0 (8b)

( 2 2 2 g m)nC¤n 1 b C¤8n 2 1 1
1

l
b C¤n 2 1 2 4 g G C¤n 2 1 5 0 (8c)

The expansions of An, Bn, and C¤n implicit in (1), when substituted into (8),
yield to order l n

an,n 5
1

2n
[B2(n 2 1) 2 D1]an 2 1,n 2 1 (9a)

bn,n 5
1

2n
[B2(n 2 1) 2 G1 2 D1]bn 2 1,n 2 1 (9b)

cn,n 5
1

2n
[B2n 2 2D1]cn 2 1,n 2 1 (9c)

(a00 5 b00 5 c00 5 1), which when n 5 1 reproduce (6). For n . 1, (9)
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constitutes a set of consistency conditions that fix those contributions to G [ f ]

in (1) that are of order l nLn without explicit calculation. These are the

ª leading-logº contributions to G [ f ]. By iterating (9), we find that

an,n 5
1

n! F 1 B2

2 2 1 1 2 B2 2 D1

2 2 G F 1 B2

2 2 ? 2 1 1 2 B2 2 D1

2 2 G
3 ? ? ? F 1 B2

2 2 n 1 1 2 B2 2 D2

2 2 G (10a)

bn,n 5
1

n! F 1 B2

2 2 1 1 2 B2 2 G1 2 D1

2 2 G F 1 B2

2 2 ? 2 1 1 2 B2 2 G1 2 D1

2 2 G
3 ? ? ? F 1 B2

2 2 ? n 1 1 2 B2 2 G1 2 D2

2 2 G (10b)

and

cn,n 5
1

n! F 1 B2

2 2 1 ( 2 D1) G F 1 B2

2 2 ? 2 1 ( 2 C1) G
3 ? ? ? F 1 B2

2 2 ? n 1 ( 2 D1) G (10c)

Since

(1 2 e ) 2 p 2 1 5 1 1
( p 1 1)

1!
e 1

( p 1 1)( p 1 2)

2!
e 2 1 ? ? ? (11)

(1) and (10) together imply that the leading-log contributions to G [ f ] sum to

G ll[ f ] 5 2
1

2
f Nf F 1 2

B2 l L

2 G
D1 /B2

1
1

2
m2f 2 F 1 2

B2 l L

2 G
(D1 1 G1)/B2

1
1

4!
l f 4 F 1 2

B2 l L

2 G
(2D1 2 B2)/B2

(12)

In Culumovic et al. (1990), explicit calculation shows that

a11 5 0 (13a)

b11 5
1

2

1

(4 p )2 (13b)
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and

c11 5
3

2

1

(4 p )2 (13c)

so that, by (6),

D1 5 0 (14a)

G1 5 2
1

(4 p )2 (14b)

and

B2 5
3

(4 p )2 (14c)

reducing (12) to

G ll[ f ] 5 2
1

2
f Nf 1

1

2
m2f 2 1 1 2

3 l L

2(4 p )2 2
2 1/3

1
1

4!
l f 4 1 1 2

3 l L

2(4 p )2 2
2 1

(15)

Hence, in the leading-log approximation, our model is characterized by an

effective mass

m2
eff( m 2) 5

m2

[1 2 3 l L/2(4 p )2]1/3 (16a)

and an effective coupling

l eff( m 2) 5
l

1 2 3 l L/2(4 p )2 (16b)

These results are, in fact, solutions to the differential equations for the ª run-

ning couplingsº in equations (4a) and (4b) when we keep only the lowest

order contributions to b ( l ) and g m( l ) and impose the boundary conditions

l eff(m
2) 5 l and m2

eff(m
2) 5 m2.

We now consider the next-to-leading-order terms in the expansion of

the effective action in powers of L. By examining (8) to order l n+1, we obtain

the conditions

2 2nan+1,n 1 (B2n 2 D1)an,n 2 1 2 G1nan,n

1 (B3(n 2 1) 2 D2)an 2 1,n 2 1 5 0 (17a)

2 2nbn+1,n 1 (B2n 2 G1 2 D1)bn,n 2 1 2 G1nbn,n
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1 (B3(n 2 1) 2 G2 2 D2)bn 2 1,n 2 1 5 0 (17b)

and

2 2ncn+1,n 1 (B2(n 1 1) 2 2D1)cn,n 2 1 2 G1ncn,n (17c)

1 (B3n 2 2D2)cn 2 1,n 2 1 5 0

When n 5 2 in (17), we obtain conditions that fix D2, G2, and B3 in terms
of the two-loop quantities a21, b21, c21, as well the one-loop quantities a11,

b11, c11 and a10, b10, c10. With n . 2, consistency conditions determine an+1,n,

bn+1,n, cn+1,n, but these expressions are sufficiently awkward as to prevent

explicit summation of the next-to-leading-logarithms (i.e., contributions of

order l nLn 2 1).

The analysis of the f 3
6 model can proceed along the same line. In this

case the effective potential has the form (Culumovic et al., 1989)

G [ f ] 5 o
`

n 5 0 H 2
1

2
f Nf (An( l )Ln) 1

m2

2
f 2(Bn( l )Ln)

1
l f 3

3!
(C¤n( l )Ln) J (18)

where

An( l ) 5 o
`

m 5 n
amn l 2m (19a)

Bn( l ) 5 o
`

m 5 n
bmn l 2m (19b)

and

C¤n( l ) 5 o
`

m 5 n
cmn l 2m (19c)

in analogy with (1) and (7). The renormalization group equation

F m
-

- m
1 b ( l )

-
- l

2 g m( l )m2 -
- m2 2 g G ( l ) f

-
- f G G [ f ] 5 0 (20)

implies that, in analogy with (8),

( 2 2 2 g m)nAn 1 b A8n 2 1 2 2 g G An 2 1 5 0 (21a)

( 2 2 2 g m)nBn 1 b B8n 2 1 2 g m Bn 2 1 2 2 g G Bn 2 1 5 0 (21b)
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( 2 2 2 g m)nBn 1 b C¤8n 2 1 1
b
l

C¤n 2 1 2 3 g G C¤n 2 1 5 0 (21c)

If now

b ( l ) 5 B3 l 3 1 B5 l 5 1 ? ? ? (22a)

g m( l ) 5 G2 l 2 1 G4 l 4 1 ? ? ? (22b)

2 g G ( l ) 5 D2 l 2 1 D4 l 4 1 ? ? ? (22c)

then to order l 2n, (21) gives

2nan,n 5 ((2n 2 2)B3 2 D2)an 2 1,n 2 1 (23a)

2nbn,n 5 ((2n 2 2)B3 2 G2 2 D2)bn 2 1,n 2 1 (23b)

2ncn,n 5 ((2n 2 1)B3 2 3±2 D2)cn 2 1,n 2 1 (23c)

From (23) with n 5 1 we obtain [using the results of Culumovic et al. (1989)]

B3 5 2
3

4(4 p )3 (24a)

G2 5
5

6

1

(4 p )3 (24b)

D2 5
1

12

1

(4 p )3 (24c)

and ann, bnn, cnn (n $ 2) are fixed by (23) in terms of B3, G2, D1. In the same

manner that we obtained (12), the leading-log approximation to G [ f ] in the

f 3
6 model is given by

G ll[ f ] 5 2 1±2 f Nf (1 2 B3 l 2L)D2 /(2B3)

1 1±2 m2f 2(1 2 B3 l 2L)(G2 1 D2)/(2B3)

1
1

3! l f 3(1 2 B3 l 2L)(3D2/4B3) 2 1/2 (25)

which by (24) becomes

G ll[ f ] 5 2
1

2
f Nf 1 1 1

3 l 2L

4(4 p )3 2
2 1/18

1
1

2
m2f 2 1 1 1

3 l 2L

4(4 p )3 2
2 11/18
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1
1

3!
l f 3 1 1 1

3 l 2L

4(4 p )3 2
2 7/12

(26)

The effective mass and coupling in our f 3
6 model are therefore given by

m2
eff( m 2) 5

m2

[1 1 3 l 2L/4(4 p )3]5/9 (27a)

and

l 2
eff( m 2) 5

l 2

1 1 3 l 2L/4(4 p )3 (27b)

once we include the rescaling of the background field f implicit in the first
term in (26) into the second and third terms.

As in the f 4 model, the results of equation (27) can be derived by

solving the differential equations (4) when only the lowest order contributions

to b , g m, and g G are considered.

All next-to-leading logarithm contributions to the effective action are

determined by the results of one- and two-loop calculations. This can be seen
by examining equation (21) to order l 2m+2. Again, as in the f 4 model, the

form of these terms does not permit one to easily sum them in closed form.

At this point we note the different sign in front of L in (16) and (27).

The negative sign that appears in the former case indicates that only when

L has large negative values (i.e., m 2 . . m2) is the effective coupling suffi-
ciently small for perturbation theory to be trustworthy. In the latter case,

where the sign in front of L is positive, L must be large and positive for the

effective coupling to be small (i.e., m 2 , , m2). This indicates that perturbative

results in the two theories can be considered reliable in distinct momentum

regimes. In the f 4
4 model, momenta Q2 must be much less than the radiatively

induced scale parameter m 2 for perturbation theory to be trusted, while for
this to be true in the f 3

6 model, Q2 must exceed m 2 by a wide margin. A

simple discussion of the renormalization group from the standpoint of scale

dependence is given in Stevenson (1981), and the significance of the sign in

front of L in the effective parameter of the theory is reviewed there.

3. DISCUSSION

In this paper, we have considered, in the context of the two scalar models

f 4
4 and f 3

6, the effect of demanding that changes in the renormalization scale

parameter be compensated for by changes in the coupling, masses, and fields

that characterize these models. We recall how this allows one to determine

the renormalization group functions b , g m, and g G by considering the finite
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effective action. It is demonstrated how consistency conditions fix higher

order results in terms of lower order ones. In particular, all leading-log

corrections can be computed in terms of one-loop effects. This allows one
to sum all leading-log contributions to the effective action in closed form.

We can thereby compute an effective mass and coupling in these two models

[given by equations (16) and (27)], which in fact are just the so-called running

coupling and running mass functions which are solutions to equations (4a)

and (4b), when we consider only lowest order contributions to the functions

b , g m, and g G . This provides an explicit demonstration of how solving the usual
renormalization group equation is equivalent to summing the logarithmic

contributions to the effective action to all orders in perturbation theory.
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